Module FormalML.lib_utils.LibUtilsFresh
Support for creating and reasoning about fresh names (represented as strings).
Require
Import
String
.
Require
Import
List
.
Require
Import
Permutation
.
Require
Import
Arith
Min
.
Require
Import
EquivDec
.
Require
Import
Morphisms
.
Require
Import
Lia
.
Require
Import
LibUtilsCoqLibAdd
.
Require
Import
LibUtilsListAdd
.
Require
Import
LibUtilsStringAdd
.
Require
Import
LibUtilsDigits
.
Require
Import
LibUtilsLift
.
Require
Import
LibUtilsSublist
.
Section
Fresh
.
Section
finder
.
Context
{
A
:
Type
}.
Context
(
incr
:
A
->
A
).
Context
(
f
:
A
->
bool
).
Fixpoint
find_bounded
(
bound
:
nat
) (
init
:
A
)
:=
match
bound
with
|
O
=>
None
|
S
n
=>
if
f
init
then
Some
init
else
find_bounded
n
(
incr
init
)
end
.
Lemma
find_bounded_correct
bound
init
y
:
find_bounded
bound
init
=
Some
y
->
f
y
=
true
.
Proof.
revert
init
.
induction
bound
;
simpl
;
intros
.
-
discriminate
.
-
match_case_in
H
;
intros
eqq
;
rewrite
eqq
in
H
.
+
inversion
H
;
congruence
.
+
eauto
.
Qed.
End
finder
.
Lemma
find_bounded_S_ge
f
bound
init
y
:
find_bounded
S
f
bound
init
=
Some
y
->
y
>=
init
.
Proof.
revert
init
y
.
induction
bound
;
simpl
;
intros
.
-
discriminate
.
-
match_destr_in
H
.
+
inversion
H
;
subst
;
lia
.
+
specialize
(
IHbound
(
S
init
)
_
H
).
lia
.
Qed.
Lemma
find_bounded_S_seq
f
bound
init
:
find_bounded
S
f
bound
init
=
find
f
(
seq
init
bound
).
Proof.
revert
init
.
induction
bound
;
simpl
;
trivial
;
intros
.
match_destr
;
auto
.
Qed.
Lemma
find_bounded_S_nin_finds
' {
A
:
Type
}
f
{
dec
:
EqDec
A
eq
} (
dom
:
list
A
)
(
bound
:
nat
) (
pf
:
bound
>
length
dom
)
(
inj
:
forall
x
y
,
f
x
=
f
y
->
x
=
y
) :
{
y
:
A
|
lift
f
(
find_bounded
S
(
fun
x
=>
if
in_dec
equiv_dec
(
f
x
)
dom
then
false
else
true
)
bound
0) =
Some
y
}.
Proof.
rewrite
find_bounded_S_seq
.
rewrite
<- (
find_over_map
(
fun
x
=>
if
in_dec
equiv_dec
x
dom
then
false
else
true
)
f
).
apply
find_fresh_from
.
-
rewrite
map_length
.
rewrite
seq_length
.
trivial
.
-
apply
map_inj_NoDup
;
trivial
.
apply
seq_NoDup
.
Defined.
Definition
find_bounded_S_nin_finds
{
A
:
Type
}
f
{
dec
:
EqDec
A
eq
} (
dom
:
list
A
)
(
bound
:
nat
) (
pf
:
bound
>
length
dom
)
(
inj
:
forall
x
y
,
f
x
=
f
y
->
x
=
y
) :
{
y
:
A
|
lift
f
(
find_bounded
S
(
fun
x
=>
if
in_dec
equiv_dec
(
f
x
)
dom
then
false
else
true
)
bound
0) =
Some
y
}.
Proof.
case_eq
(
find_bounded
S
(
fun
x
:
nat
=>
if
in_dec
equiv_dec
(
f
x
)
dom
then
false
else
true
)
bound
0).
-
intros
;
simpl
.
exists
(
f
n
);
reflexivity
.
-
destruct
(
find_bounded_S_nin_finds
'
f
dom
bound
pf
inj
);
intros
.
rewrite
H
in
e
.
simpl
in
e
.
discriminate
.
Defined.
Definition
find_fresh_inj_f
{
A
:
Type
} {
dec
:
EqDec
A
eq
}
f
(
inj
:
forall
x
y
,
f
x
=
f
y
->
x
=
y
) (
dom
:
list
A
) :
A
:=
proj1_sig
(
find_bounded_S_nin_finds
f
dom
(
S
(
length
dom
)) (
gt_Sn_n
_
)
inj
).
Lemma
find_fresh_inj_f_fresh
{
A
:
Type
} {
dec
:
EqDec
A
eq
}
f
(
inj
:
forall
x
y
,
f
x
=
f
y
->
x
=
y
) (
dom
:
list
A
) :
~
In
(
find_fresh_inj_f
f
inj
dom
)
dom
.
Proof.
unfold
find_fresh_inj_f
.
match
goal
with
| [|-
context
[
proj1_sig
?
x
]] =>
destruct
x
end
;
simpl
.
apply
some_lift
in
e
.
destruct
e
as
[?
e
?];
subst
.
apply
find_bounded_correct
in
e
.
match_destr_in
e
.
Qed.
Definition
find_fresh_string
(
dom
:
list
string
)
:=
find_fresh_inj_f
nat_to_string16
nat_to_string16_inj
dom
.
Lemma
find_fresh_string_is_fresh
(
dom
:
list
string
) :
~
In
(
find_fresh_string
dom
)
dom
.
Proof.
unfold
find_fresh_string
.
apply
find_fresh_inj_f_fresh
.
Qed.
Definition
fresh_var
(
pre
:
string
) (
dom
:
list
string
) :=
let
problems
:=
filter
(
prefix
pre
)
dom
in
let
problemEnds
:=
map
(
fun
x
=>
substring
(
String.length
pre
) (
String.length
x
-
String.length
pre
)
x
)
problems
in
append
pre
(
find_fresh_string
problemEnds
).
Lemma
fresh_var_fresh
pre
(
dom
:
list
string
) :
~
In
(
fresh_var
pre
dom
)
dom
.
Proof.
unfold
fresh_var
.
intros
inn
.
rewrite
in_of_append
in
inn
.
apply
find_fresh_string_is_fresh
in
inn
.
trivial
.
Qed.
Lemma
fresh_var_fresh1
x1
pre
dom
:
x1
<>
fresh_var
pre
(
x1
::
dom
).
Proof.
intro
inn
.
apply
(
fresh_var_fresh
pre
(
x1
::
dom
)).
rewrite
<-
inn
.
simpl
;
intuition
.
Qed.
Lemma
fresh_var_fresh2
x1
x2
pre
dom
:
x2
<>
fresh_var
pre
(
x1
::
x2
::
dom
).
Proof.
intro
inn
.
apply
(
fresh_var_fresh
pre
(
x1
::
x2
::
dom
)).
rewrite
<-
inn
.
simpl
;
intuition
.
Qed.
Lemma
fresh_var_fresh3
x1
x2
x3
pre
dom
:
x3
<>
fresh_var
pre
(
x1
::
x2
::
x3
::
dom
).
Proof.
intro
inn
.
apply
(
fresh_var_fresh
pre
(
x1
::
x2
::
x3
::
dom
)).
rewrite
<-
inn
.
simpl
;
intuition
.
Qed.
Lemma
fresh_var_fresh4
x1
x2
x3
x4
pre
dom
:
x4
<>
fresh_var
pre
(
x1
::
x2
::
x3
::
x4
::
dom
).
Proof.
intro
inn
.
apply
(
fresh_var_fresh
pre
(
x1
::
x2
::
x3
::
x4
::
dom
)).
rewrite
<-
inn
.
simpl
;
intuition
.
Qed.
Definition
fresh_var2
pre1
pre2
(
dom
:
list
string
) :=
let
fresh_var1
:=
fresh_var
pre1
dom
in
(
fresh_var1
,
fresh_var
pre2
(
fresh_var1
::
dom
)).
Lemma
fresh_var2_distinct
pre1
pre2
dom
:
(
fst
(
fresh_var2
pre1
pre2
dom
)) <>
(
snd
(
fresh_var2
pre1
pre2
dom
)).
Proof.
unfold
fresh_var2
;
simpl
.
apply
fresh_var_fresh1
.
Qed.
Definition
fresh_var3
pre1
pre2
pre3
(
dom
:
list
string
) :=
let
fresh_var1
:=
fresh_var
pre1
dom
in
let
fresh_var2
:=
fresh_var
pre2
(
fresh_var1
::
dom
)
in
let
fresh_var3
:=
fresh_var
pre3
(
fresh_var2
::
fresh_var1
::
dom
)
in
(
fresh_var1
,
fresh_var2
,
fresh_var3
).
Lemma
fresh_var3_distinct
pre1
pre2
pre3
dom
:
(
fst
(
fst
(
fresh_var3
pre1
pre2
pre3
dom
))) <>
(
snd
(
fst
(
fresh_var3
pre1
pre2
pre3
dom
))) /\
(
snd
(
fst
(
fresh_var3
pre1
pre2
pre3
dom
))) <>
(
snd
(
fresh_var3
pre1
pre2
pre3
dom
)) /\
(
fst
(
fst
(
fresh_var3
pre1
pre2
pre3
dom
))) <>
(
snd
(
fresh_var3
pre1
pre2
pre3
dom
)).
Proof.
unfold
fresh_var3
;
simpl
.
split
;[|
split
].
-
apply
fresh_var_fresh1
.
-
apply
fresh_var_fresh1
.
-
apply
fresh_var_fresh2
.
Qed.
Definition
get_var_base
(
sep
:
string
) (
var
:
string
)
:=
match
index
0 (
string_reverse
sep
) (
string_reverse
var
)
with
|
Some
n
=>
substring
0 (
String.length
var
- (
S
n
))
var
|
None
=>
var
end
.
Lemma
get_var_base_pre
sep
var
:
prefix
(
get_var_base
sep
var
)
var
=
true
.
Proof.
unfold
get_var_base
.
match_destr
;
simpl
.
-
apply
substring_prefix
.
-
apply
prefix_refl
.
Qed.
Definition
fresh_var_from
sep
(
oldvar
:
string
) (
dom
:
list
string
) :
string
:=
if
in_dec
string_dec
oldvar
dom
then
fresh_var
(
append
(
get_var_base
sep
oldvar
)
sep
)
dom
else
oldvar
.
Lemma
fresh_var_from_fresh
sep
oldvar
(
dom
:
list
string
) :
~
In
(
fresh_var_from
sep
oldvar
dom
)
dom
.
Proof.
unfold
fresh_var_from
.
match_destr
.
apply
fresh_var_fresh
.
Qed.
Lemma
find_fresh_inj_f_equivlist
x
y
:
equivlist
x
y
->
find_fresh_inj_f
nat_to_string16
nat_to_string16_inj
x
=
find_fresh_inj_f
nat_to_string16
nat_to_string16_inj
y
.
Proof.
intros
.
unfold
find_fresh_inj_f
;
simpl
.
repeat
(
match
goal
with
| [|-
context
[
proj1_sig
?
x
]] =>
destruct
x
end
;
simpl
).
apply
some_lift
in
e
.
destruct
e
as
[?
e
?];
subst
.
apply
some_lift
in
e0
.
destruct
e0
as
[?
e0
?];
subst
.
f_equal
.
rewrite
find_bounded_S_seq
in
e
,
e0
.
rewrite
(
find_ext
(
fun
x0
:
nat
=>
if
in_dec
equiv_dec
(
nat_to_string16
x0
)
x
then
false
else
true
)
(
fun
x0
:
nat
=>
if
in_dec
equiv_dec
(
nat_to_string16
x0
)
y
then
false
else
true
))
in
e
.
-
eapply
find_seq_same
;
eauto
.
-
intros
.
do
2
match_destr
.
+
rewrite
H
in
i
;
congruence
.
+
rewrite
<-
H
in
i
;
congruence
.
Qed.
Global
Instance
find_fresh_string_equivlist
:
Proper
(
equivlist
==>
eq
)
find_fresh_string
.
Proof.
intros
???.
unfold
find_fresh_string
.
apply
find_fresh_inj_f_equivlist
;
trivial
.
Qed.
Global
Instance
fresh_var_equivlist
:
Proper
(
eq
==>
equivlist
==>
eq
)
fresh_var
.
Proof.
intros
??????;
subst
.
unfold
fresh_var
.
rewrite
H0
.
reflexivity
.
Qed.
Lemma
fresh_var_from_id
sep
v
l
:
~
In
v
l
->
fresh_var_from
sep
v
l
=
v
.
Proof.
unfold
fresh_var_from
.
match_destr
;
tauto
.
Qed.
Lemma
fresh_var_from_nincl
{
sep
v
l
l2
} :
In
(
fresh_var_from
sep
v
l
)
l2
-> ~
incl
l2
l
.
Proof.
intros
inn1
incl
.
apply
(
fresh_var_from_fresh
sep
v
l
).
apply
incl
;
trivial
.
Qed.
Lemma
fresh_var_from_incl_nin
sep
v
l1
l2
:
incl
l2
l1
->
~
In
(
fresh_var_from
sep
v
l1
)
l2
.
Proof.
intros
incl1
inn
.
apply
(
fresh_var_from_nincl
inn
);
trivial
.
Qed.
End
Fresh
.
Ltac
prove_fresh_nin
:=
match
goal
with
| [ |- ~
In
(
fresh_var
?
pre
?
l
)
_
] =>
solve
[
generalize
(
fresh_var_fresh
pre
l
);
simpl
;
intuition
]
| [ |-
In
(
fresh_var
?
pre
?
l
)
_
->
False
] =>
solve
[
generalize
(
fresh_var_fresh
pre
l
);
simpl
;
intuition
]
| [ |- ~ (
fresh_var
?
pre
?
l
) =
_
] =>
solve
[
generalize
(
fresh_var_fresh
pre
l
);
simpl
;
intuition
]
| [ |- (
fresh_var
?
pre
?
l
) <>
_
] =>
solve
[
generalize
(
fresh_var_fresh
pre
l
);
simpl
;
intuition
]
| [
H
:
In
(
fresh_var
?
pre
?
l
)
_
|-
_
] =>
solve
[
generalize
(
fresh_var_fresh
pre
l
);
simpl
;
intuition
]
| [
H
:(
fresh_var
?
pre
?
l
) =
_
|-
_
] =>
solve
[
generalize
(
fresh_var_fresh
pre
l
);
simpl
;
intuition
]
end
.